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Computation of Proper and Improper Modes

in Multilayered Bianisotropic Waveguides

Francisco Mesa and Manuel Homo, Member, IEEE

Abstract-An efficient numerical method is presented to determine the

loci of both the proper and complex improper modes of a multilayered
bianisotropic planar waveguide. The propagation constants of the wave-

guide modes are expressed in terms of the zeros of a specific analytic
function. The use of appropriate integration zero-searching methods

is proposed since information about the possible number of complex
improper modes cannot be previously extracted. The general formulation
presented here has been applied to the study of the complex improper

modes of single and two-layer structures containing magnetized ferrites.

It has been found that the transition from physical proper to complex
improper modes is made throughout a nonphysical real improper mode.

I. INTRODUCTION

The grounded multilayered planar waveguide is the basic back-

ground of microstrip antennas, microstrip patch resonators and open

dielectric waveguides for integrated optics and millimeter-wave inte-

grated circuits [1], [2]. A topic which demands recent and increasing

interest is the effect of an increasing number of layers [3] and

substrate complexity [4] on the radiation pattern in antennas, the

resonant frequency of patch resonators and the propagation char-

acteristics in open dielectric waveguides. Computation and further

analysis of the Green’s function of the involved configuration can

become essential. This aualysis is usually carried out by studying the

singularities of the Green’s function: the branch-point singularities

account for the free dipole radiation and the pole singularities for the

background radiation and guided modes [1]. Thus, finding the pole

singularities, which are located on a two-sheeted Riemann surface,

is a preliminary step in obtaining closed-form representations of the

Asymptotic Green’s Function (AGF) [3], [5]. Assuming that the upper

sheet of the Riemman surface is defined as ftdfilling the radiation

condition, the poles located on this sheet (proper sheet) form a finite

and real subset which corresponds to the bounded modes guided

by the layered slab. On the other hand, the complex and infinite

subset of poles located on the bottom (improper) sheet, correspond

to unbounded modes which are usually called leaky modes [1].
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There are some works in the literature devoted to the computation

(and further application) of the proper and real improper modes

[6]. Complex improper modes are treated in [5], where the possible

significance of these complex modes is also discussed. Nevertheless,

to our knowledge the substrate of the considered structures was

assumed to be isotropic. Thus, the purpose of the present paper is

to provide an efficient numerical method to determine the location

of proper and improper waveguide modes in a planar waveguide

with layered bianisotropic substrate. The method is based on the

computation of the zeros of a specific analytic complex function

(with no poles or branch-cut singularities). The search for the zeros

of this function is carried out using an integral scheme which

enables analysis of the complex plane (determining the number of

zeros included within the closed integration contour) and accurate

computation of the zeros.

11. ANALYSIS

In this section, the dispersion relation of a bianisotropic layered

waveguide will be obtained. Note that this waveguide ranges from

a simple grounded/coverecf/slab dielectric waveguide to waveguides

with gyrotropic (semiconductor andhr ferrites biased by an arbitrarily

oriented external d.c. magnetic field) and/or chiral layered substrate.

The theory presented here is also applicable to those multilayered

planar waveguides whose upper and bottom boundary conditions can

be expressed as impedance or admittance dyads.

This work pointedly formulates the dispersion relation of the

generic waveguide under consideration in terms of the zeros of an

analytic function. This fact will be relevant in connection with the

zero-searching procedure since the usual methods work efficiently

when applied to analytic functions in the search region. The following

dependence of the electromagnetic field at the plane of the interfaces

(that is, the x, z components) X = (Ez, E,, Hz, Hz ), is assumed:

X(z, g, z,t) = exp(–jtit)exp(-jkt . p) X(y), where u is the

angular frequency, p = xa. + za, and kt = k~a~ + Ic, a,

is the wavevector. As is shown in [7], the X vector inside each

layer (denoted by the subscript i) is given in terms of a certain

exponential matrix and a certain reference value, that is: X,(y) =

exp (jw[Q]t y) . X,(0) The explicit form of each element of the

(4 x 4) juJ[Q], matrix as a function of the layer characteristics is

shown in [8].

Once fields at the upper interface of each layer are expressed in

terms of fields at the bottom interface of each layer, we can express

the field at the upper interface of the whole waveguide, X“, in

terms of the field at the bottom interface of the waveguide, X5, by

applying the continuity condition of the X vector at each intermediate

interface. Thus, assuming that Nt is the total number of layers, the

following matrix relation is obtained: X“ = [A] . X*, where the [A]
matrix is given by [A] = ~~~1 exp (jti[Q] ,k, ) — h, is the height

of the i-th layer —.

The above matrix relation, together with the matrix impedance

relations of Et = ( Ex, E,) and HL = (H., H. ) at the upper and

bottom interfaces of the waveguide, enables writing the following

matrix equations in terms of the (2 x 2)[A,, ] submatrices of the [A]

matrix and the impedance matrices, [Z u] and [Z6]:

E? = [All] E: + {ALz] . H: (1)

H: = [Az, ] . E; + [A,2] . H? (2)

E: = [Zu] H: (3)

E: = [Zb] . H;. (4)
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Fig. 1 Loci of the TE normalized propagation constant of the improper

modes (TE leaky wave poles) in the grounded dielectric waveguide analyzed

in Fig. 6 of [5], e, = 9. (— ): This work (0,*, A, 0):[5].

This (4 x 4) matrix equation may be solved providing that the

determinant of the above matrix is null, and then the dispersion

relation of the waveguide is given by:

F(k., k., ti) = det {([AI,] [Zb] + [-41,])

- ([ZU] ~ [Az,] ~ [Z,]+ [ZU] . [Azz])} = O. (5)

It should be emphasized that the present formulation of the waveguide

dispersion relation leads to function F(kz, k,, w) containing no poles.

This statement can be justified on the basis of physical arguments

although this can be also understood from the mathematical nature

of the impedance matrices and construction of the [A] matrices.

Nevertheless, function F may have branch points at k,= +ko which

would stem from the vacuum impedance matrices.

For a given frequency and fixed values of, for example, k., the

propagation constants of the waveguide under study are given by

the different values of k= which make the function F vanish. As

previously mentioned, the efficiency of root searching methods is

closely related to the use of an analytic function. In the present

case, the function F ( kz; k., u) (k. and w are now considered as

parameters) is not analytic in the complex kz plane. Nevertheless,

upon introducing a new complex variable z via the transformation

k. = u2copo – k; sinz, (6)

the branch point disappears in the new complex z-plane (although

poles appear in the multiples of +7r/2). The transformation (6)

maps the two-sheeted Riemann surface defined in the k, -plane into

regions of width 27r in the z-plane (more details on the above

mapping can be found in [1]). Therefore, the dispersion relation of

the waveguide can be expressed in analytic form in the z-plane as:

(z* ~) W;k.,w) = O.
The search for the zeros should be then carried out in the complex

z-plane, using the integraf method presented in some detail in [7].

Once all the z~ zeros inside a given region have been computed,

the propagation constants of the waveguide are given by k., ~ =

w260p0 — k? sm Zm.

III. NUMERICAL RESULTS

A computer code has been implemented to obtain the propagation

characteristics and field patterns of the proper and improper modes

of a grounded layered waveguide. First for comparison, the grounded

dielectric slab previously studied in Fig. 6 of [5] is analyzed. Fig. 1

shows the loci of the normalized complex propagation constants
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Fig. 2 Loci of the normalized propagation constant of the improper TM-like

modes for a grounded waveguide with a ferrite substrate biased by a normally

applied d.c. magnetic field. c, = 15, 47rA4~ D 1200 G., Ho n 500 Oe.
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Fig, 3 Dispersion relation of the three slab-guided modes appearing in
Table I. (— -): Re(k, /ko ) corresponds to proper modes. (- --
— — - -): Re(kZ/ko ) corresponds to improper modes. ( . . . . . . . . . . . .):

Hm(k, /ko )corresponding to improper modes.

corresponding to five TE improper modes of that structure. A good

agreement is found between our results and the points marked in this

figure, which reproduce the numerical values reported in the caption

of Fig. 6 in [5].

After this comparison, novel results are now presented for open

waveguides containing ferrite layers. Thus, Fig. 2 shows the loci of

several TM-like modes in the complex (kt /kO )-plane for a grounded

waveguide with a ferrite substrate biased by a normally applied

d.c. magnetic field HO (all the biased ferrite substrates are assumed

fully saturated and HO represents the intensity of the internal Ho

field). ‘l’his figure shows that the effect of the leaky waves becomes

more significant as d/AO increases. Table I shows the propagation

constants of the real proper modes, and several real and complex

improper modes at a specific operation frequency, for the background

waveguide proposed in [4]. This waveguide is composed of a biased

ferrite (parallel to the interface) on a grounded isotropic substrate. The

values presented in Table I refer to the propagation constant along

the +Z direction and were obtained assuming kz = O. It can be seen

in Table I that three slab-guided modes (proper modes) exist at 20
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TABLE I
NORMALIZEDPROPAGATIONCONSTAiWSOF THE PROPERAND VASUOUSIMPROPER

MODES (o <lm(kz/kO) < II, o <Re(kz/kO) < 5) FORA GROUNDEDWAVEGUIDE
WITH A DLELECTRIC-FERRITECOMPOSITESUBSTRATE. LOWER DtELECTRtC LAYER

WITH h ~.21NII, h~.lmm, AND BIASED FERRITE LAYER (HO = HOan j WITH

.7,1 = 12.9, 67,2 = 12.6, 4TM. = 2750 G, HO = 825 Oe, FIeq = 20 GHz.

Proper Modes Improper Modes

E
Re(kz/kO)

#1 3.3705

#2 2.7107

#3 1.1443

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10
.

Re(kZ/kO)

3.3527

0.0711

0.0748

0.0923

0.4336

0.8296

1.1063

1.1500

1.1794

1.4345

[m(k./kO)

o

-10:6579

-7.9868

-5.1117

-1.2679

-9.2161

-4.4223

-1.0485

-10.7319

-6.8996

GHz. The dispersion curves of these modes for frequencies below

20 GHz are shown in Fig. 3. The solid lines represent its frequency

behavior when the corresponding root lies on the proper sheet; the

dashed and dotted lines represent its mathematical prolongation on the

improper sheet. If the cutoff frequency is defined as that frequency

where the root of one mode passes through the branch cut, Fig. 3

shows that the fundamental TM slab-guided wave (marked by #1 ) has

no cutoff frequency, but the other two slab-guided modes show cutoff

frequencies at 7.35 and 14.55 GHz, respectively. Note that in open

structures, the cutoff frequency separates the nature of the mode into

proper and improper, rather than into propagating and evanescent. If

Fig. 3 is read from the right-to the left-hand side, we can observe how

the proper real mode #3 becomes an improper real mode at its cutoff

frequency. This improper real mode encounters another improper

real mode coming from high values of Re(kz /k. ) at 8.7 GHz, and

these two modes come together to form a complex improper mode

below this frequency. The transition between the physical bound and

unbound modes (that is, the proper real and the leaky modes) is made

throughout the nonphysical real improper mode. This type of conduct

has been previously reported in the literature and is usually known as

spectral gap [9]. The above behavior is also found for mode #2, but it

appears beyond the limits of Fig. 3. Moreover, the scheme described
for mode #3 is always found for all slab-guided modes of grounded

layered waveguides.

IV. SUMMARY

This work presented an efficient numerical procedure to compute

the propagation constants of both the proper and improper modes

of a planar bianisotropic layered waveguide bounded by upper and

bottom interfaces which can be simulated by impedance/admittance

dyads. The dispersion relation of the waveguide has been posed,

in a compact way, as the roots of a certain analytic (no poles or

branch cuts) function, and integral techniques are suggested to search

efficiently for these roots. The transition from proper to improper

modes in a grounded waveguide containing a biased ferrite layer has

been studied, and a spectral gap has been found in the prolongation

from the bound mode to the leaky mode.
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A Note on the Mode Characteristics of a Ferrite Slab

Hung-Yu Yang

Abstract-Properties of guided-wave modes of a ferrite slab propagat-

ing in the direction transverse to the bias field are reexamined. Anatytic

results for the frequencies where magmetostatic and dynamic modes exist

simultaneously are found. The method of eliminating the dynamic modes

in the magnetostatic-wave operation is described. The formulas for the

distinction of oscillatory and surface-wave modes are also derived.

I. INTRODUCTION

Guided-wave properties of a ferrite slab have been studied ex-

tensively in the past, for example with a magnetostatic analysis

[1]-[5] and with a full-wave analysis [6]–[10]. It has been found that

microwave devices with ferrite slabs are capable of space-frequency

selection of signals [11]. It has been well recognized that a ferrite
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