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Computation of Proper and Improper Modes
in Multilayered Bianisotropic Waveguides

Francisco Mesa and Manuel Horno, Member, IEEE

Abstract—An efficient numerical method is presented to determine the
lIoci of both the proper and complex improper modes of a multilayered
bianisotropic planar waveguide. The propagation constants of the wave-
guide modes are expressed in terms of the zeros of a specific analytic
function. The use of appropriate integration zero-searching methods
is proposed since information about the possible number of complex
improper modes cannot be previously extracted. The general formulation
presented here has been applied to the study of the complex improper
modes of single and two-layer structures containing magnetized ferrites.
It has been found that the transition from physical proper to complex
improper modes is made throughout a nonphysical real improper mode.

I. INTRODUCTION

The grounded multilayered planar waveguide is the basic back-
ground of microstrip antennas, microstrip patch resonators and open
dielectric waveguides for integrated optics and millimeter-wave inte-
grated circuits [1], [2]. A topic which demands recent and increasing
interest is the effect of an increasing number of layers [3] and
substrate complexity [4] on the radiation pattern in antennas, the
resonant frequency of patch resonators and the propagation char-
acteristics in open dielectric waveguides. Computation and further
analysis of the Green’s function of the involved configuration can
become essential. This analysis is usually carried out by studying the
singularities of the Green’s function: the branch-point singularities
account for the free dipole radiation and the pole singularities for the
background radiation and guided modes [1]. Thus, finding the pole
singularities, which are located on a two-sheeted Riemann surface,
is a preliminary step in obtaining closed-form representations of the
Asymptotic Green’s Function (AGF) [3], [5]. Assuming that the upper
sheet of the Riemman surface is defined as fulfilling the radiation
condition, the poles located on this sheet (proper sheet) form a finite
and real subset which corresponds to the bounded modes guided
by the layered slab. On the other hand, the complex and infinite
subset of poles located on the bottom (improper) sheet, correspond
to unbounded modes which are usually called leaky modes [1].
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There are some works in the literature devoted to the computation
(and further application) of the proper and real improper modes
[6]. Complex improper modes are treated in [5], where the possible
significance of these complex modes is also discussed. Nevertheless,
to our knowledge the substrate of the considered structures was
assumed to be isotropic. Thus, the purpose of the present paper is
to provide an efficient numerical method to determine the location
of proper and improper waveguide modes in a planar waveguide
with layered bianisotropic substrate. The method is based on the
computation of the zeros of a specific analytic complex function
(with no poles or branch-cut singularities). The search for the zeros
of this function is carried out using an integral scheme which
enables analysis of the complex plane (determining the number of
zeros included within the closed integration contour) and accurate
computation of the zeros.

II. ANALYSIS

In this section, the dispersion relation of a bianisotropic layered
waveguide will be obtained. Note that this waveguide ranges from
a simple grounded/covered/slab dielectric waveguide to waveguides
with gyrotropic (semiconductor and/or ferrites biased by an arbitrarily
oriented external d.c. magnetic field) and/or chiral layered substrate.
The theory presented here is also applicable to those multilayered
planar waveguides whose upper and bottom boundary conditions can
be expressed as impedance or admittance dyads.

This work pointedly formulates the dispersion relation of the
generic waveguide under consideration in terms of the zeros of an
analytic function. This fact will be relevant in connection with the
zero-searching procedure since the usual methods work efficiently
when applied to analytic functions in the search region. The following
dependence of the electromagnetic field at the plane of the interfaces
(that is, the z,z components) X = (E,, E., H,, H.), is assumed:
X(z,y, z,t) = exp(—jwt)exp(—jke- p)X(y), where w is the
angular frequency, p = =za, + za. and ki = kza, + k.a,
is the wavevector. As is shown in [7], the X vector inside each
layer (denoted by the subscript ¢) is given in terms of a certain
exponential matrix and a certain reference value, that is: X, (y) =
exp (jw[Q].y) - X.(0) . The explicit form of each element of the
(4 x 4) jw[Q]. matrix as a function of the layer characteristics is
shown in [8].

Once fields at the upper interface of each layer are expressed in
terms of fields at the bottom interface of each layer, we can express
the field at the upper interface of the whole waveguide. X", in
terms of the field at the bottom interface of the waveguide, X®, by
applying the continuity condition of the X vector at each intermediate
interface. Thus, assuming that NV; is the total number of layers, the
following matrix relation is obtained: X* = [A]- X", where the [A]
matrix is given by [A] = fﬁl exp (jw{Q].h,) — h, is the height
of the i-th layer —.

The above matrix relation, together with the matrix impedance
relations of E; = (E..E.) and H, = (H,, H,) at the upper and
bottom interfaces of the waveguide, enables writing the following
matrix equations in terms of the (2 X 2)[A,;] submatrices of the [A]
matrix and the impedance matrices, [Z.} and [Z3]:

E! = [Au] - E} +[Ar] - HY )
HY = [AL]-EY + [Az] - H? @)}
E; = [Z.] - H 3)
E{ = [Z] - H;. @
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Fig. 1 Loci of the TE normalized propagation constant of the improper

modes (TE leaky wave poles) in the grounded dielectric waveguide analyzed
in Fig. 6 of [5], & = 9. ( ). This work; (O, *, A, $):f5].

This (4 x 4) matrix equation may be. solved providing that the
determinant of the above matrix is null, and then the dispersion
relation of the waveguide is given by:

F(ke, ke yw) = det {([A11] - [Zs] + [As2])
- ([Zu] ! [AZI] : [Zb] + [Zu] . {AQQ])} = 0. (5)

It should be emphasized that the present formulation of the waveguide
dispersion relation leads to function F'(k, k-, w) containing no poles.
This statement can be justified on the basis of physical arguments
although this can be also understood from the mathematical nature
of the impedance matrices and construction of the [A] matrices.
Nevertheless, function F' may have branch points at k, =% k%o which
would stem from the vacuum impedance matrices.

For a given frequency and fixed values of, for example, k., the
propagation constants of the waveguide under study are given by
the different values of k. which make the function I vanish. As
previously mentioned, the efficiency of root searching methods is
closely related to the use of an analytic function. In the present
case, the function F'(k.;k;,w) (k; and w are now considered as
parameters) is not analytic in the complex k. plane. Nevertheless,
upon introducing a new complex variable z via the transformation

k, = \/w?eopo — k2 sinz, 6)

the branch point disappears in the new complex z-plane (although
poles appear in the multiples of £a/2). The transformation (6)
maps the two-sheeted Riemann surface defined in the k.-plane into
regions of width 27 in the z-plane (more details” on the above
mapping can be found in [1]). Therefore, the dispersion relation of
the waveguide can be expressed in analytic form in the z-plane as:
(z+ 5)F(z keyw) = 0.

The search for the zeros should be then carried out in the complex
z-plane, using the integral method presented in some detail in [7].
Once all the z,, zeros inside a given region have been computed,
the propagation constants of the waveguide are given by k. m =

Vwreopo — k2 sin zp,.

III. NUMERICAL RESULTS

A computer code has been implemented to obtain the propagation
characteristics and field patterns of the proper and improper modes
of a grounded layered waveguide. First for comparison, the grounded
dielectric slab previously studied in Fig. 6 of [5] is analyzed. Fig. 1
shows the loci of the normalized complex propagation constants
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Fig. 2 Loci of the normalized propagation constant of the improper TM-like
modes for a grounded waveguide with a ferrite substrate biased by a normally
applied d.c. magnetic field. e, = 15, 4x M, = 1200 G., Hy = 500 Oe.
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Fig. 3 Dispersion relation of the three slab-guided modes appearing in
Table I. (—————): Re(k,/ko) corresponds to proper modes. (- — —
— — — =) Re(k:/ko) corresponds to improper modes. (--+:-+------ )
+1Im(k /ko)corresponding to improper modes.

corresponding to five TE improper modes of that structure. A good
agreement is found between our results and the points marked in this
figure, which reproduce the numerical values reported in the caption
of Fig. 6 in [5].

After this comparison, novel results are now presented for open
waveguides containing ferrite layers. Thus, Fig. 2 shows the loci of
several TM-like modes in the complex (k¢ /ko)-plane for a grounded
waveguide with a ferrite substrate biased by a normally applied
d.c. magnetic field Hy (all the biased ferrite substrates are assumed
fully saturated and Hy represents the intensity of the internal Hp
field). This figure shows that the effect of the leaky waves becomes
more significant as d/Xo increases. Table I shows the propagation
constants of the real proper modes, and several real and complex
improper modes at a specific operation frequency, for the background
waveguide proposed in [4]. This waveguide is composed of a biased
ferrite (parallel to the interface) on a grounded isotropic substrate. The
values presented in Table I refer to the propagation constant along
the 4z direction and were obtained assuming %, = 0. It can be seen
in Table I that three slab-guided modes (proper modes) exist at 20
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TABLE 1
NORMALIZED PROPAGATION CONSTANTS OF THE PROPER AND VARIOUS IMPROPER
MODES (0 <Im(k/kg) < 11,0 <Re(k./kg) < 5) FOR A GROUNDED WAVEGUIDE
WITH A DIELECTRIC-FERRITE COMPOSITE SUBSTRATE. LOWER DIELECTRIC L.AYER
WITH h1=2mm, ha=1mm, AND BIASED FERRITE LAYER (Hq = Hya,) WITH
€r,1 = 129, €50 = 126, dn M = 2750 G, Ho = 8 25 Oe, Freq = 20 GHz.

H

h,
h,

Proper Modes Improper Modes

Re(k./ko) | Im(k./ko)
#1 3.3527 0
2 0.0711 -10.6579
Re(k, /ko) #
#3 0.0748 -7.9868
4 0.092 -5.
#1 3.3705 # ; ) 4332 51117
#2| 2707 # ) 0'82 -1.2679
#3 1.1443 # ) 9 -9.2161
#7 1.1063 -4.4223
#8 1.1500 -1.0485
#9 1.1794 -10.7319
# 10 1.4345 -6.8996

GHz. The dispersion curves of these modes for frequencies below
20 GHz are shown in Fig. 3. The solid lines represent its frequency
behavior when the corresponding root lies on the proper sheet; the
dashed and dotted lines represent its mathematical prolongation on the
improper sheet. If the curoff frequency is defined as that frequency
where the root of one mode passes through the branch cut, Fig. 3
shows that the fundamental TM slab-guided wave (marked by #1) has
no cutoff frequency, but the other two slab-guided modes show cutoff
frequencies at 7.35 and 14.55 GHz, respectively. Note that in open
structures, the cutoff frequency separates the nature of the mode into
proper and improper, rather than into propagating and evanescent. If
Fig. 3 is read from the right- to the left-hand side, we can observe how
the proper real mode. #3 becomes an improper real mode at its cutoff
frequency. This improper real mode encounters another improper
real mode coming from high values of Re(k./ko) at 8.7 GHz, and
these two modes come together to form a complex improper mode
below this frequency. The transition between the physical bound and
unbound modes (that is, the proper real and the leaky modes) is made
throughout the nonphysical real improper mode. This type of conduct
has been previously reported in the literature and is usually known as
spectral gap [9]. The above behavior is also found for mode #2, but it
appears beyond the limits of Fig. 3. Moreover, the scheme described
for mode #3 is always found for all slab-guided modes of grounded
layered waveguides.

IV. SuMMARY

This work presented an efficient numerical procedure to compute
- the propagation constants of both the proper and improper modes

of a planar bianisotropic layered waveguide bounded by upper and
bottom interfaces which can be simulated by impedance/admittance
dyads. The dispersion relation of the waveguide has been posed,
in a compact way, as the roots of a certain analytic (no poles or
branch cuts) function, and integral techniques are suggested to search
efficiently for these roots. The transition from proper to improper
modes in a grounded waveguide containing a biased ferrite layer has
been studied, and a spectral gap has been found in the prolongation
from the bound mode to the leaky mode.
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A Note on the Mode Characteristics of a Ferrite Slab

Hung-Yu Yang

Abstract—Properties of guided-wave modes of a ferrite slab propagat-
ing in the direction transverse to the bias field are reexamined. Analytic
results for the frequencies where magnetostatic and dynamic modes exist
simultaneously are found. The method of eliminating the dynamic modes
in the magnetostatic-wave operation is described. The formulas for the
distinction of oscillatory and surface-wave modes are also derived.

1. INTRODUCTION

Guided-wave properties of a ferrite slab have been studied ex-
tensively in the past, for example with a magnetostatic analysis
[1]-[5] and with a full-wave analysis [6]-[10]. It has been found that
microwave devices with ferrite slabs are capable of space-frequency
selection of signals [11]. It has been well recognized that a ferrite
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